Math 53: Multivariable Calculus Sections 102, 103

Worksheet for 2020-04-29

Problems 2x + ()3 ~2+4=9
Problem 1. Throughout this problem, let H denote the plane z = 2x + 4.
(a) LetF = (3yz, xz, xy—yz). Show thatif C is any oriented simple closed curve contained in the plane H, then [ F-dr = 0,
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(b) Let G = (x*y — y,0,5°/6). If we let D to be any simple closed curve contained in the plane H which is oriented
counterclockwise when viewed from above, find the maximum possible value of the integral [}, G - dr.
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Math 53: Multivariable Calculus Worksheet for 2020-04-29

Problem 2. Use Stokes' theorem to evaluate [ F - dr where F = (x%y, %x3 ,xy) and C is the curve of intersection of the
hyperbolic paraboloid z = y* — x? and the cylinder x* + y* = L, Cew whewn viewed —r(DWL above
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Problem 3. Consider the cone z = \/x2 + y2, z < 9, oriented upwards. Use the divergence theorem to evaluate the flux of

(x,0,0) through the cone. Note that the cone is not a closed surface.
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