Worksheet for 2020-04-29

Problems

$$
2 x+0 y-z+4=0
$$

Problem 1. Throughout this problem, let H denote the plane $z=2 x+4$.
(a) Let $\mathbf{F}=\langle 3 y z, x z, x y-y z\rangle$. Show that if C is any oriented simple closed curve contained in the plane H, then $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=0$, regardless of C.

$$
\nabla \times \vec{F}=\operatorname{det}\left[\begin{array}{ccc}
\hat{\jmath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
3 y z & x z & x y-y z
\end{array}\right]
$$

$$
=\iint_{R}\langle-z, 2 y,-2 z\rangle \cdot \vec{n} d S \quad=\langle-z, 2 y,-2 z\rangle
$$

$$
= \pm \iint_{R}\langle-z, 2 y,-2 z\rangle \cdot \frac{\langle 2,0,-1\rangle}{\sqrt{5}} d S=\iint_{R} 0 d S=0
$$

depending on
orientation of C.
(b) Let $\mathbf{G}=\left\langle x^{2} y-y, 0, y^{3} / 6\right\rangle$. If we let D to be any simple closed curve contained in the plane H which is oriented counterclockwise when viewed from above, find the maximum possible value of the integral $\int_{D} \mathbf{G} \cdot \mathrm{dr}$.

$$
=\iint\left\langle\frac{y^{2}}{2}, 0,1-x^{2}\right\rangle \cdot\langle-2,0,1\rangle d u d v
$$

$$
\begin{aligned}
& z=2 x+4 \\
& \vec{r}(u, v)=\langle u, v, 2 u+4\rangle \\
& \vec{r}_{u} \times \vec{r}_{v}=\left[\begin{array}{ccc}
i & \hat{\jmath} & \hat{k} \\
1 & 0 & 2 \\
0 & 1 & 0
\end{array}\right] \\
&=\langle-2,0,1\rangle
\end{aligned}
$$

Some region
in 4,5 in 4,y
plane

$$
\begin{aligned}
&=\iint\left(1-u^{2}-v^{2}\right) d u d v=\int_{0}^{2 \pi} \int_{0}^{1}\left(1-r^{2}\right) r d r d \theta \\
& 1-u^{2}-v^{2} \geq 0
\end{aligned}
$$

Problem 2. Use Stokes' theorem to evaluate $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$ where $\mathbf{F}=\left\langle x^{2} y, \frac{1}{3} x^{3}, x y\right\rangle$ and C is the curve of intersection of the hyperbolic paraboloid $z=y^{2}-x^{2}$ and the cylinder $x^{2}+y^{2}=1$; cCD when viewed from above

Problem 3. Consider the cone $z=\sqrt{x^{2}+y^{2}}, z \leq 9$, oriented upwards. Use the divergence theorem to evaluate the flux of $\langle x, 0,0\rangle$ through the cone. Note that the cone is not a closed surface.

0 because $\vec{F}_{\text {prate le }}$ to

$$
\text { Hence } \begin{aligned}
\iint_{D} \cdot \cdot d \vec{S}=-V_{01}(M) & =-\frac{1}{3} \pi 9^{2} \cdot 9
\end{aligned}
$$

